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EXACT SOLUTIONS FOR SOUND RADIATION
FROM A CIRCULAR DUCT *

Y. C. Cho and K. Uno Ingard†

Ames Research Center

SUMMARY

This paper presents a method of evaluation of Wiener-Hopf technique solutions for sound
radiation from an unflanged circular duct with infinitely thin duct wall, including mean flows.

1. INTRODUCTION

Sound radiation from circular ducts is a classical acoustics problem. Exact solutions were
previously reported: the Wiener-Hopf technique was used for radiation of propagating modes from
a circular duct with negligibly thin duct wall (refs. 1–3), and the hyperboloidal wave function was
defined and employed for radiation from duct with various types of termination, including a plane
flange and horns (ref. 4). Exact solutions undoubtedly help one to gain physical insight into the
problem and can often be used in practical designs. In this electronic computation age, another
significant role of exact solutions is defined as means of cross examination of results of numerical
techniques. These techniques, embraced as computational aeroacoustics, are just starting to attract
widespread attention as a potential tool in attacking important aeroacoustic problems for which
quantitative solutions are not available.

Despite the elegance of the closed form solutions with the Wiener-Hopf technique, numerical
presentations have been limited to mere demonstrations of its capability. As a matter of fact, no
computer program is publicly available for its numerical evaluation. Numerical evaluation of the
Wiener-Hopf solution is not straightforward; it requires the exercise of extreme care and, often,
sophisticated mathematical tricks. This paper attempts to provide a comprehensive mathematical
procedure for evaluation of Wiener-Hopf solutions.

In section 2, acoustic waves will be briefly reviewed for in-duct propagation and radiation. In
section 3, the Wiener-Hopf technique is applied to obtain solutions, and section 4 is devoted to the
evaluation of integrals involved in the solutions.

* Partly based on two consulting reports submitted to Pratt and Whitney Aircraft, May 25, 1976, and December 17, 1976.
†Massachusetts Institute of Technology, Cambridge, Massachusetts.
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2. REVIEW OF DUCT ACOUSTICS

Duct acoustics will be briefly reviewed here for aspects relevant to the present problem. This
review is also intended for clarification of terminology and nomenclature used in this paper.

The wave equation for the acoustic pressure, p, in flow is
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Here c is speed of sound, and 
  

r

V  the mean flow velocity which is assumed to have only the axial
component. The analysis is confined to a steady wave with the harmonic time dependence e i t− ω ,
and axial angle dependence e i mφ , where m is an integer called the circumferential mode number.
Equation (1) is then written for circular cylindrical coordinates (r, φ , x) as
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where k c= ω /  and M V c= / .

The sound radiation from an unflanged circular duct is schematically displayed in figure 1. With
reference to this figure, the entire region is divided into two: region 1 for r < a, and region 2 for
r  > a, where a is the duct radius. The subscripts 1 and 2 will be used from now on to indicate,
respectively, regions 1 and 2, unless specified otherwise. The mean flow velocities are assumed to
be uniform in each region and are denoted by V1 and V2 . For V V1 2≠ , there will be the mean flow
mismatch at r = a, for x > 0. The sound speed can differ for the two regions for reasons such as
differences in mean density and temperature. The respective sound speeds, wave constants, air
densities, and Mach numbers are denoted by c1 and c2 , k1 and k2, ρ1 and ρ2 , and M1 and M2,
where k c1 1=ω / , k c2 2=ω / , M V c1 1 1= / , and M V c2 2 2= / .

In a hard-wall circular duct, the general solution to equation (2) is obtained as
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HereJm is the Bessel function of order m, µmn  the nth zero of ′J xm ( ), and Amn  and Bmn constant
coefficients. The wave constants kmn

+  and kmn
−  correspond to the mode propagations, respectively, in

the positive (to the right) and the negative (to the left) directions, and are given by
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The integer n here is called the radial mode number, and the pair (m,n) is used to represent a single
duct mode.

Consider the incident wave of a single mode, say 
  

( , )m l ,
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This wave is incident from x = −∞  and propagating toward duct termination, as shown in figure 1.
Upon arriving at the duct termination, it will be partly reflected back into the duct and partly radiated
out of the duct. In general, the reflected wave contains many radial modes, including propagating
and attenuating modes, and is represented by
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Here 
  

R n
m
l,  is the conversion coefficient for the 

  

( , )m l mode incident and the ( , )m n  mode reflected.
The reflection problem is completely solved by determining this coefficient for all values of n. The
Wiener-Hopf technique yields radiation solutions in terms of the far field, which is represented by

  

p f
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im
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2
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Here R is the radial distance from the center of the duct termination and θ  the polar angle measured
from the x-axis (duct axis), as shown in figure 1. (R,θ ,φ ) are spherical coordinates. The complex
factor

  

fml

( )θ  is called the amplitude gain function, which provides the far field directivity of
radiation. The phase Λ( , , )k M R2 2  of the far field depends on M2 as well as on k2 and R. The
radiation problem is completely solved by determining 

  

fml

( )θ  and Λ( , , )k M R2 2 .

This analysis with a single mode incident can be extended to accommodate incident waves
composed of many modes in a straightforward manner.

3. WIENER-HOPF FORMULATION

The Wiener-Hopf technique involves extensive mathematical manipulation in the Fourier
transform space. The Fourier transform of p(r , x) is given by
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and p(r , x) is restored by the inverse transform
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In the process of the Wiener-Hopf formulation, various parameters and functions are defined and
derived as follows:
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In derivingK( )α , we have used the condition of the continuity of the acoustic pressure and
acoustic displacement at the mean flow mismatch at r = a, for x > 0. K( )α  is factorized into
two: one is analytic in the upper half plane (+) and the other in the lower half plane (–) as
K K K( ) ( ) ( )α α α= ⋅+ − . These factors will be included in the final solutions with arguments
representing physical quantities. For the present problem, the factorization is obtained not in
closed forms but in integral representations as follows:
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Here the integral path is from −∞ to +∞ near the real axis, and the argument y+ ( )y−  is located
above (below) the respective integral path, as illustrated in figure 2.
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Forgoing details of the formulation (ref. 5), the final results are presented here. The conversion
coefficient for the reflection is obtained as
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The symmetry between the radial mode numbers 
  
l  and n is salient, implying that the result satisfies

the reciprocity principle (ref. 6), which can be used to infer the conversion coefficients of a
nonpropagating mode.

For the radiation, the phase is obtained as
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and the amplitude gain function is
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Here the modified coordinates′R  and ′θ  are defined as
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H xm
( )( )1  is the Hankel function of the first kind, and H xm

( ) ( )1 ′
 is its derivative with respect

to x.

Comments are made on the expression of 
  

fml

( )θ  for two limiting cases. First, as can be
shown readily, when θ  becomes zero, the quantity in the first square bracket will be infinite except
for the case of m = 0. In other words, the radiated field is zero for θ  = 0 except for the radiation of
axisymmetric modes. Second, as will be seen later, when its argument approaches − +kmn , K+  in the
second square bracket varies as 

  

[ ( )]kml

+ −− η θ 1. It follows that the radiated field will be zero for the
angle satisfying

  

η θ θ( ) cos ,= ′ = + −( ) ≠+
+

k M M
k

k
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mnor for2 2
2

2
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However, for the angle corresponding to the incident propagation constant 
  

kml

+ , the radiated field
is nonzero, because the term adjacent to K+  becomes zero in this limit. In fact, the radiated field
reaches the maximum in this limit. These findings are all familiar for cases of no mean flows. We
will also see later that if its argument approaches − +k M1 11( ), then K+  varies in such a way as to
compensate the term involving the square root in the same square bracket to maintain the amplitude
gain finite.

A remark should be made on the constant TM . As M1 and M2 both become zero, this constant
becomes zero, but the expressions for the conversion coefficients and the radiation directivity remain
correct, and finite when evaluated as a limit.

4. NUMERICAL EVALUATION

The integrals in equations (15) and (16) cannot be carried out analytically, and thus we will
employ a semi-numerical method. To this end, all the variables are made dimensionless by multi-
plying or dividing with the duct radius a. For notation simplification, the sub- or superscript m will
often be dropped.

K( )α  satisfies all the conditions required for its factorization by the integration. Nevertheless,
the integrand possesses singular points in the vicinity of the integral paths. These singular points
arise as branch points, simple poles, and zeroes of K( )α . It should be emphasized that there are no
other singularities near the integral paths. The branch points are located at α = ±q1 . We adopt a rule
for determining phase around these branch points, as illustrated in figure 3. For example, consider
( )α − −q1 . Its phase is 180 degrees for its real part less than zero, and changes clockwise to zero as
the real part becomes positive. On the other hand, the phase of ( )α − +q1  is –180 degrees for the real
part less than zero, and changes counterclockwise to zero as the real part becomes positive. This rule
should be strictly observed for the integrations.

The simple poles of K( )α  occur at zeroes of ′I am ( )γ 1 , which is included through W1 ( )α  as in
equations (11) and (14). Theses zeroes correspond to the wave constants of duct modes, and one can
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show that the simple poles of K( )α  are located at 
  

α ν= ≡ −±
n mnkm . Note that νn mnk+ −≡ −( )  is above

the respective integral path, and νn mnk− +≡ −( )  is below the respective integral path, as shown in
figure 2. K( )α  can also possess zeroes near the integral path if q q1 2

+ +> . The zeroes are located
between α = +q2  and α = +q1 , and above the integral path. The number of zeroes equals that of
simple poles between α = +q2  and α = +q1 , or can be less by one. The zeroes are denoted by zn , for
n  = 1, 2,...no , with no  being the number of zeroes. These zeroes are ordered such that z1 is the
smallest and zno

 the largest.

The imaginary parts of all the singular points are related to Im (k). As the latter tends to zero, all
the singular points approach the real axis, and the integral paths are then indented, as shown in
figure 2(b).

Consider the integral

I K
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This integral is divided, for convenience, as
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R’s are the contribution from the integration over larger arguments as
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±> qj .

B’s are the contribution from the integration over small intervals containing the branch points:
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S’s are the contribution from the integration over small intervals containing the simple poles:
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1

,  being the largest propagating radial mode number (29)
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Z’s are the contribution from the integration over small intervals containing the zeroes of K( )α :
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Y is the contribution from the interval containing the pole at α = y:
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where the plus (negative) sign indicates that the pole is above (below) the integral path. This integral
needs to be evaluated only if K( )α  is free of singularity and zeroes within the integral limit. Other-
wise, it should belong to one of B, S, and Z because there are no singular points other than those
involved in B, S, or Z.

Finally N is the integral over all the remaining intervals. There is no singularity at all in these
intervals, and thus the integration can be carried out numerically.

K( )α  approaches unity as α  becomes large; that is, Lim
α

α
→±∞

=K( ) 1, and thus K( )α  can be
expanded for a large α , as

K
A A

( )α
α α

≅ + +1 1 2
2 (35)

where the expansion coefficients A1 and A2 can be readily obtained. With this substitution to
equations (25) and (26), one obtains
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where

d = −A

A

A2

1

1
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(37)

Error limits and the expansion coefficients are used to determine the integral limits χ± .

The integral near the branch points can be replaced by

B
Q

y

q

y±
±

±
=

−
− −

−∫ ∫Log
d

Log
d

( ) ( )α
α

α α
α

α1
2

1 (38)

where

Q K q±
±= ⋅ −( ) ( )α α α 1 (39)

Q± ( )α  are free of singularity and zeroes within the respective chosen integral limits.

The simple poles of K( )α  are separated as follows:
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where
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L± ( )α  are free of singularity and zeroes within the respective integral limits.

The zeroes of K( )α  are similarly separated as
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U
K

zn
( )

( )α α
α

=
−

(43)

U( )α  is free of singularity and zeroes within the respective integral limit.
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Now consider the integral

H y
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Here G( )α  is free of singularity and zeroes within the integral limit, and thus represents Q± ( )α  in
equation (38), L± ( )α in equation (40), U( )α  in equation (42), or K( )α  in equation (34) if K( )α  is
free of singularity in that region. This integral can be written as
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As α  approaches y, one readily obtains
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Thus, the first integral in equation (45) does not involve any singularity, and can be easily evaluated
whether y is within the integral limit or not. The integral contained in the second term yields
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where (± ) signs are used to indicate that the simple pole is above (+) or below (–) the integral path,
which is indented around the pole like ∪  for (+) and ∩  for (–).

Consider the integrals
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Here, the singular point at α ξ=  is within the integral limit, that is, a b< <±ξ . The subscript on
ξ  and y is used to indicate that the pole is above (+) or below (–) the integral path. The indented
integral paths are shown in figure 4. The second integral in each of equations (38), (40), and (42) is
identified with one of the integrals in equations (48)–(51). These integrals are evaluated as follows:
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and for y± > b,
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ξ

Log Log Log

Log Log

2
2 2

2
1

3
1
2

1

( ) ( )

(53)

where the upper (lower) sign of iπ  corresponds to ξ+  (ξ− ).

For a < y± < b,

  

Ω−
±

− − ± − ±

± − ± −

=

∞
− ±

±

− ±

−

= ± −( ) + − − −[ ]

− −( ) + −( )[ ] + −( ) ⋅ −( )

+ − −
−







+ −∑

i y a i y y

b y a b b y

j

y

b

y

y
j

j

π π ξ ξ

ξ ξ

π ξ
ξ

ξ

Log Log Log

Log Log Log Log

( ) ( )

( ) ( )

m

1
2

2
1

2 2

2

2
1 −−

















a

j

(54)

 

  

Ω+
±

+ + ± + ±

± + ± +

=

∞
+ ±

±

+ ±

+

= ± −( ) + − −[ ]

− −( ) + −( )[ ] + −( ) ⋅ −( )

+ − −
−







+ −
−∑

i y a i y y

b y a b b y

j

y

b

y

y
j

j

π π ξ ξ

ξ ξ

π ξ
ξ

ξ

Log Log Log

Log Log Log Log

( ) ( )

( ) ( )

m

1
2

2
1

2 2

2

2
1 aa

j

















(55)
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All the integrals involving singular points are analytically evaluated according to equations (47)
and (52)–(55). For large arguments extending to the infinite, the integral is evaluated according to
equation (36). The rest involves finite integrals with well-behaved integrands, and thus can be
numerically evaluated without any difficulty.

A remark will be made on the results in equations (54) and (55), particularly on the second term
on the right. This term vanishes if y andξ  are on the same side (above or below) with respect to
the integral path. However, if y andξ  are separated by the integral path, the second term equals

  

± −±2π ξi yLog( )
m

 and diverges as y approaches ξ . Of the K -factors contained in the results in
equations (17) and (19), only K+ −( )η θ( )  can have y and ξ  separated by the integral path. Its
argument is above the integral path according to equation (15). As θ  varies, the argument can
approach a singular point located below the integral path. For this case, the second term above is
given by 2π η θ ξi Log − −( )−( ) , where ξ−  is νn

−  or q1
− . Inspecting equations (15), (23), (24), (38),

and (55), one obtains, for −η θ( ) close to q1
− ,

K
q

+ −
−( ) ∝

− −
η θ

η θ
( )

( )

1

1

(56)

Similarly, from equations (15), (23), (24), (40), and (55), one obtains, for −η θ( ) close to νn
− ,

K n+
− −

−( ) ∝ − −( )η θ η θ ν( ) ( )
1

(57)

It follows that, as η θ( ) approaches kmn
+ , then 

  

fml

( )θ  given in equation (19) tends to be zero for

  

n≠ l  and will reach the maximum for 
  

n= l . Also, one can see that 
  

fml

( )θ  will remain finite asη θ( )
approaches k M1 11( )+ , as discussed earlier.

CONCLUDING REMARKS

An analysis for evaluation of the Wiener-Hopf solution was presented for sound radiation from
an unflanged circular duct with mean flows. This analysis was initially developed for radiation of
spinning modes in conjunction with aircraft inlet noise control studies. We have a well-working
computer code available for such radiation. However, while generating numerical results for the
benchmark problems, we learned that the code needed to be refined for radiation of the
axisymmetric modes.
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Figure 1. Sound radiation from unflanged circular duct with flow.
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mode); (b) indentation of the integral paths as Im (k) → approaches 0.
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Figure 3. Branch points, branch cuts, and phase convention: 0° < θ−  < 180° and –180° < θ+  < 0°.
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Figure 4. Integral path indentation for integrations involving two singular points at α = y and ξ .
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